EXERCISES IN DIOPHANTINE GEOMETRY

SPARSITY OF ALGEBRAIC POINTS, MSRI JUNE 2021

This is a selection of exercises in Diophantine geometry prepared for the MSRI Summer school on
Sparsity of algebraic points| jointly with Yunqing Tang. These have been edited to be independent of
the lectures.

MANIN-MUMFORD CONJECTURE FOR CURVES

This series of exercises deduces the Manin-Mumford conjecture from a deep theorem of Serre
concerning Galois action on the Tate module of an abelian variety, following Baker-Ribet. Throughout
X will denote a curve of genus g > 2 defined over a field K of characteristic zero, and ¢ : X — Jac X
will denote the Abel-Jacobi embedding of X relative to a rational degree 0 divisor D. (For our
purpose, it is OK to consider an Abel-Jacobi map over K and pick D to be the divisor given by a
K-point on X.)

The Manin-Mumford conjecture asserts that i(X)(K) N Jac X (K )tors is finite.

(1)
(2)

Suppose K = C and P,Q,R € X(C) are distinct points on X. Suppose that 2i(P) =
i(Q) +i(R). Show that X is hyperelliptic and P is fixed by the hyperelliptic involution.
Suppose e > 1 is an integer. Show that there exists a constant C(e) such that for every
m > C(e) the equation z¢ + y® = 22¢ has solutions in Z/mZ such that z¢, y¢, z¢ are pairwise
distinct and x,y, z are invertible to Z/mZ.

Note. Consider the cases when m is a prime, and m is a power of a fixed small prime
(e.g. 2) first.

We use the following theorem.

Theorem 1 (Serre). Suppose K is a number field and A/K is an abelian variety. Then
there exists a constant e such that for all n € Z \ {0}, there exists an element g € Gal(K/K)
that acts on any torsion point P of A of order prime to n via multiplication by n°.

Suppose K is a number field and let e denote the constant from Theorem [1] applied to
Jac X. Suppose P € X(K) is a torsion point of order m > C(e). Use part to conclude
that there exists 2z € Z prime to m such that 2“P is a hyperelliptic branch point. Conclude

that X (K) has only finitely many torsion points.
Use spreading out to prove the Manin—-Mumford conjecture for any curve X/C.

Remark 2. Recent (2021) work of Dimitrov—Gao—Habegger and Kiihne implies that there is
a uniform upper bound for the number of torsion points on a curve of genus g. At the same
time the order of a torsion point on a genus g curve is known to be unbounded!

TARSKI’S THEOREM

This series of exercises presents a proof Tarski’s theorem. This proof uses the notion of the
topological degree of a map from RP! = S! to itself.

A basic semialgebraic set in R" is a set of the form {x € R"|fi(z) = fa(z) = ... = fm(x) =
0,91(z) > 0,g2(x) >0, ..., gx(x) > 0} for polynomials f;,g;. A semialgebraic set is a finite union of
basic semialgebraic sets.
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Theorem 3 (Tarski). The image of a semialgebraic set under a linear projection 7 : R™ — RF is
semialgebraic.

(1) Check that the collection of semialgebraic sets is closed under unions, complements and
intersections.

(2) Show that Tarski’s theorem is equivalent to showing that the image 7(S) of a basic semialge-
braic set S C R™ under the coordinate projection 7 : R™ — R"~! is semialgebraic.

(3) Show that it suffices to show the following;:

For given integers (d, m, k) let RN = R(m+k)(d+1) he the linear space parameterizing all
tuples of one-variable polynomials fi, ..., fm, g1, ..., g € R[z] of degree at most d. Then the
subset of RV corresponding to tuples fi, ..., fm, g1, ..., gr for which the system f; = 0, g; >0
has a solution x € R is semialgebraic.

(4) Calculate the topological degree of the map f : RP! — RP! given by a polynomial f =
%+ O(xd71).

(5) Suppose f,g € R(z) are rational functions without common poles. Show that the topological
degree [] satisfies [f + g] = [f] + [g] and [1/f] = —[f].

(6) Suppose a rational function f/g, f,g € R[x] has a continued fraction expansion

i=f0+ -
g 1
hit—

.. + .
T
Show that [f/g] = [fo] — [f1] + ... + (=1)*[fl.

(7) A real-valued function on a semialgebraic set S is called constructive if it takes only finitely
many values and the level sets of the function are semialgebraic. Show that the function
[f/g] defined on the space R x {R¥1\ {0}} of pairs of degree at most d polynomials f,
g, g # 0 is constructive.

(8) In the notation of problem (), show that

l9f' /1 =1[fol+ > sign g(a).

« root of f

Therefore (f,g) — Zf(ac):O sign g(x) is a constructive function on the set of pairs of
polynomials f, g with f # 0.

(9) Use the constructivity of functions Zf(x):(] sign g(x) and Zf(x):O sign ¢g2(r) to show that
the number of zeroes of f on the set g(x) > 0 is a constructive function (as P, Q vary over
all nonzero polynomials of degree at most d and P # 0).

(10) Show that the number of real roots of a polynomial P that satisfy the constraints f; = ... =
fm = 0,91, ..., gx > 0 for some polynomials f;, g; is a constructive function on the set of all
polynomial tuples (f;, g;, P) of degree at most d for which P # 0.

(11) Given g1, ..., gm € R[z], consider the rational function R = g1...g;m/(1+2N). Let G := g1...9m
and let P = G'(1 +2V) — NGzN~! be the numerator of the derivative of R. Show that for
large enough N the system P =0,g; > 0, ..., g, > 0 has a solution if and only if the sustem
g1 > 0,..., 9, > 0 has a solution.

(12) Show that the subset of the set of all tuples of polynomials g1, ..., g, of degree at most d
consisting of tuples for which the system ¢g; > 0, ..., g, > 0 is solvable is semialgebraic.

(13) Prove Tarski’s theorem.

The topological approach to Sturm-like theorems is taken from Khovanskii-Burda “Degree
of rational mappings, and the theorems of Sturm and Tarski”.
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AX’S THEOREM USING O-MINIMALITY
The goal of this problem is to give a proof of the following theorem of Ax, following Tsimerman.

Theorem 4. Let A C C be a domain and suppose fi,..., fm : A — C are holomorphic functions
that are Q-linearly independent modulo constants. Then

tr.deg(C(f1, ..., fm,exp(fi), ..., exp(fm))/C) = m+ 1

(1) Prove that Ax’s theorem is equivalent to the following statement.
Let I' € C™ x (C*)™ denote the graph of exp. Let V" C C™ x (C*)™ be an irreducible
algebraic subvariety. Let U denote an irreducible component of V NI". Suppose the projection
of U to (C*)™ does not lie in a coset of a proper subtorus of (C*)™. Then

dimc V > dimc U 4+ m.

In the remaining exercises we will prove this statement by induction on (m, dim V —dim U, m—
dim U). We may assume that dimU > 0 as dim U = 0 case is trivial.

(2) Let W denote the smallest affine linear subvariety in C™ containing the projection of U to
C™ and let F denote the fundamental domain

{(z1, -y Zmy W1, oy wWy) €C™ X (C)™ 0K R(2i) < 1,1 < i <mb.
Prove that the following subset I C R™ is definable in Rap exp

I= {ac eR™ ’ GdimU((«T + V) N (F ﬁf),W) #* @},

where Ggim (Y, W) is the set of all y € Y such that Y is regular of dimension dim U around
y and the smallest affine linear subvariety in C™ containing the irreducible component of Y’
containing y is a translation of W.

(3) Prove that if I N Z™ is finite, then U is definable.
From here we prove by contradiction that I NZ" is infinite because U, a definable closed
analytic subvariety in C™ x (C*)™, must be algebraic by a theorem of Peterzil and Starchenko
("Tame complex analysis and o-minimality" Theorem 4.5); on the other hand U being
algebraic contradicts with U is contained in the graph of exp.

(4) Use I NZ™ is infinite to prove that I contains a semi-algebraic curve Cr.

(5) By the definition of I, for each ¢ € Cg, we consider an irreducible component X, of
(C+V)N(I'NF) of dimension dim U such that the smallest affine linear subvariety containing
X, is a translation of W. Prove that if there are infinitely many distinct W,, then there is
an irreducible component X of (C'+ V) NI of dimension dim U + 1 and show that we can
apply induction hypothesis to (C' + V') to conclude.

(6) Prove that if there is only finitely many distinct X, then there exists X, which is contained
in ¢+ V for all ¢ € C. Show that we may apply inductive hypothesis to conclude if C+V #£ V.

(7) The remaining case is when C 4+ V = V. Prove that there exists V° such that V' = C x V9
with V0 € C™~1 x (C*)™~1 x C* after a suitable linear change of coordinates. Conclude by
applying induction hypothesis on m.

Reference: Tsimerman "Ax—Schanuel and o-minimality"

THE CLASS NUMBER ONE PROBLEM

This problem shows that the class number one problem for imaginary quadratic fields can be
reduced to finding integral points on certain modular curves. Let K denote an imaginary quadratic
field of discriminant D and class number 1, and let Ok denote its ring of integers.
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(1) Suppose K is a quadratic imaginary field of class number 1, and E = C/A is an elliptic curve
with CM by Og. Show that E is isomorphic to C/Ok.

(2) Suppose that E is an elliptic with CM by Ox. Show that j(E) € Y (1) is a rational number.

(3) Suppose p is a fixed prime. Show that for D > 0 and K as above the prime p has to either
be inert or ramify in Og.
From now on we fix a small prime p and assume it to be inert; the ramified case is similar.

(4) Show that the action of O /p on E[p| defines a point on the nonsplit Cartan modular curve
Xns(p). This modular curve is a quotient of the modular curve X (p), parameterizing elliptic
curves with a basis of E[p], by the action of the normalizer of nonsplit Cartan subgroup
HC GLQ(FP).

(5) Show that the j-invariant of a CM elliptic curve is an integer.

Thus it suffices to find integral points on X,,4(p) for some small p. For example one finds
that the curve X,,5(7) has geometric genus 0 and three “cusps”; one can find integral points
on such curves effectively.

(6) The case of a ramified prime can be handled similarly using modular curves. There is also
a more straighforward approach: show that if the discriminant D is divisble by 2 distinct
primes then the class group of K has nontrivial 2-torsion.

RUNGE’S METHOD

Suppose that the equation f(z,y) =0, f € Q[z,y] defines a smooth affine curve X, and that the
intersection of X with the line at infinity contains two nonintersecting Galois orbits D1, Ds.

(1) Show that there exists a pair of polynomials P;, Py € Z[z,y] such that P; restricted to X
has no poles outside D;.

(2) Show that the equation f(z,y) = 0 has only finitely many integral solutions.

(3) Suppose F, G € Z[z] are irreducible relatively prime monic polynomials of the same degree
d > 2. Use Runge’s method to show that the equation F/(X) = G(Y) has only finitely many
integer solutions.

MAX NOETHER'S THEOREM

The gonality of a curve X is the minimal degree of a nonconstant morphism f : X — P!

(1) Show that the gonality of a smooth plane curve of degree d is at most d — 1.

(2) Suppose X is a smooth plane curve of degree d > 3 and f : X — P! is a map of degree less
than d — 1. Let £ := f*O(1), and let Ox(n) denote the pullback of O(n) on P? to X. Show
that there exists an embedding £ — Ox(d — 2).

(3) Show that there exists a pencil of plane curves of degree k < (d — 1) that cuts out the linear
series given by f on X. Conclude that the degree of f is at least k(d — k), and thus the
gonality of a smooth plane curve is equal to d — 1.

(4) Show that the gonality of an irreducible singular plane curve is less than d — 1.

MISCELLANEOUS EXERCISES
(1) Show that there does not exists an elliptic curve E/Q with surjective adelic Galois action
o+ Gal(@/Q) — [T, GLa(Zy).
(2) (Schanuel’s theorem) Show that as X goes to infinity the following formula hods:

#{PcP"(Q): HP) < X} ~ C(n+1)X +1
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where ((s) = [[,(1 — p~*)~! is the Riemann zeta function.
Note. The case n =1 is already interesting.

(3) Suppose £/ SpecZ is a regular curve and P € 2 (Z) is an integral point. Show that for
every prime p the reduction of P in ZF, is a smooth point of ZF,.

(4) (Hall’s conjecture for polynomials) Suppose A, B € C[z] are relatively prime, deg A = 2d,
deg B = 3d. Show that deg(A3 — B%) >d+1

(5) Prove the following result of Siegel.

Theorem 5. Let f € Z[z] be a polynomial of degree d > 2 without repeated factors. For
a nonzero integer N let Z2(N) denote the largest prime factor of N. Then the sequence
Z(f(n)), n=1,2... grows to infinity.

(6) This exercise shows that the “normal crossing divisor” assumption in Vojta’s conjecture is
necessary.
Let K be a number field and consider X = P% with homogenenous coordinates [zq : 1 : z2]
and a divisor D = (21 = 0) + (72 = 0) + ((x1 — 22)z0 = (71 + 72)?).
(a) Prove that D is not a normal crossing divisor.
(b) Prove that x(Kx ® Ox (D)) = dim(X).
(c) Prove that for large enough S, the set of S-integral points in X \ D is Zariski dense.
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