
EXERCISES IN DIOPHANTINE GEOMETRY
SPARSITY OF ALGEBRAIC POINTS, MSRI JUNE 2021

This is a selection of exercises in Diophantine geometry prepared for the MSRI Summer school on
Sparsity of algebraic points jointly with Yunqing Tang. These have been edited to be independent of
the lectures.

Manin–Mumford conjecture for curves

This series of exercises deduces the Manin-Mumford conjecture from a deep theorem of Serre
concerning Galois action on the Tate module of an abelian variety, following Baker-Ribet. Throughout
X will denote a curve of genus g > 2 defined over a field K of characteristic zero, and i : X → JacX
will denote the Abel–Jacobi embedding of X relative to a rational degree 0 divisor D. (For our
purpose, it is OK to consider an Abel–Jacobi map over K and pick D to be the divisor given by a
K-point on X.)

The Manin–Mumford conjecture asserts that i(X)(K) ∩ JacX(K)tors is finite.
(1) Suppose K = C and P,Q,R ∈ X(C) are distinct points on X. Suppose that 2i(P ) =

i(Q) + i(R). Show that X is hyperelliptic and P is fixed by the hyperelliptic involution.
(2) Suppose e > 1 is an integer. Show that there exists a constant C(e) such that for every

m > C(e) the equation xe + ye = 2ze has solutions in Z/mZ such that xe, ye, ze are pairwise
distinct and x, y, z are invertible to Z/mZ.

Note. Consider the cases when m is a prime, and m is a power of a fixed small prime
(e.g. 2) first.

(3) We use the following theorem.

Theorem 1 (Serre). Suppose K is a number field and A/K is an abelian variety. Then
there exists a constant e such that for all n ∈ Z \ {0}, there exists an element g ∈ Gal(K/K)
that acts on any torsion point P of A of order prime to n via multiplication by ne.

Suppose K is a number field and let e denote the constant from Theorem 1 applied to
JacX. Suppose P ∈ X(K) is a torsion point of order m > C(e). Use part (1) to conclude
that there exists z ∈ Z prime to m such that zeP is a hyperelliptic branch point. Conclude
that X(K) has only finitely many torsion points.

(4) Use spreading out to prove the Manin–Mumford conjecture for any curve X/C.

Remark 2. Recent (2021) work of Dimitrov–Gao–Habegger and Kühne implies that there is
a uniform upper bound for the number of torsion points on a curve of genus g. At the same
time the order of a torsion point on a genus g curve is known to be unbounded!

Tarski’s theorem

This series of exercises presents a proof Tarski’s theorem. This proof uses the notion of the
topological degree of a map from RP1 = S1 to itself.

A basic semialgebraic set in Rn is a set of the form {x ∈ Rn|f1(x) = f2(x) = ... = fm(x) =
0, g1(x) > 0, g2(x) > 0, ..., gk(x) > 0} for polynomials fi, gj . A semialgebraic set is a finite union of
basic semialgebraic sets.
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Theorem 3 (Tarski). The image of a semialgebraic set under a linear projection π : Rn → Rk is
semialgebraic.

(1) Check that the collection of semialgebraic sets is closed under unions, complements and
intersections.

(2) Show that Tarski’s theorem is equivalent to showing that the image π(S) of a basic semialge-
braic set S ⊂ Rn under the coordinate projection π : Rn → Rn−1 is semialgebraic.

(3) Show that it suffices to show the following:
For given integers (d,m, k) let RN = R(m+k)(d+1) be the linear space parameterizing all

tuples of one-variable polynomials f1, ..., fm, g1, ..., gk ∈ R[x] of degree at most d. Then the
subset of RN corresponding to tuples f1, ..., fm, g1, ..., gk for which the system fi = 0, gj > 0
has a solution x ∈ R is semialgebraic.

(4) Calculate the topological degree of the map f : RP1 → RP1 given by a polynomial f =
xd +O(xd−1).

(5) Suppose f, g ∈ R(x) are rational functions without common poles. Show that the topological
degree [·] satisfies [f + g] = [f ] + [g] and [1/f ] = −[f ].

(6) Suppose a rational function f/g, f, g ∈ R[x] has a continued fraction expansion

f

g
= f0 +

1

f1 +
1

. . . +
1

fk

.

Show that [f/g] = [f0]− [f1] + ...+ (−1)k[fk].
(7) A real-valued function on a semialgebraic set S is called constructive if it takes only finitely

many values and the level sets of the function are semialgebraic. Show that the function
[f/g] defined on the space Rd+1 × {Rd+1 \ {0}} of pairs of degree at most d polynomials f ,
g, g 6= 0 is constructive.

(8) In the notation of problem (6), show that

[gf ′/f ] = [f0] +
∑

α root of f

sign g(α).

Therefore (f, g) 7→
∑

f(x)=0 sign g(x) is a constructive function on the set of pairs of
polynomials f, g with f 6= 0.

(9) Use the constructivity of functions
∑

f(x)=0 sign g(x) and
∑

f(x)=0 sign g2(x) to show that
the number of zeroes of f on the set g(x) > 0 is a constructive function (as P,Q vary over
all nonzero polynomials of degree at most d and P 6= 0).

(10) Show that the number of real roots of a polynomial P that satisfy the constraints f1 = ... =
fm = 0, g1, ..., gk > 0 for some polynomials fi, gj is a constructive function on the set of all
polynomial tuples (fi, gj , P ) of degree at most d for which P 6= 0.

(11) Given g1, ..., gm ∈ R[x], consider the rational function R = g1...gm/(1+xN ). Let G := g1...gm
and let P = G′(1 + xN )−NGxN−1 be the numerator of the derivative of R. Show that for
large enough N the system P = 0, g1 > 0, ..., gm > 0 has a solution if and only if the sustem
g1 > 0, ..., gm > 0 has a solution.

(12) Show that the subset of the set of all tuples of polynomials g1, ..., gm of degree at most d
consisting of tuples for which the system g1 > 0, ..., gm > 0 is solvable is semialgebraic.

(13) Prove Tarski’s theorem.
The topological approach to Sturm-like theorems is taken from Khovanskii-Burda “Degree

of rational mappings, and the theorems of Sturm and Tarski”.
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Ax’s theorem using o-minimality

The goal of this problem is to give a proof of the following theorem of Ax, following Tsimerman.

Theorem 4. Let ∆ ⊂ C be a domain and suppose f1, ..., fm : ∆ → C are holomorphic functions
that are Q-linearly independent modulo constants. Then

tr.deg(C(f1, ..., fm, exp(f1), ..., exp(fm))/C) > m+ 1

(1) Prove that Ax’s theorem is equivalent to the following statement.
Let Γ ⊂ Cm × (C×)m denote the graph of exp. Let V ⊂ Cm × (C×)m be an irreducible
algebraic subvariety. Let U denote an irreducible component of V ∩Γ. Suppose the projection
of U to (C×)m does not lie in a coset of a proper subtorus of (C×)m. Then

dimC V > dimC U +m.

In the remaining exercises we will prove this statement by induction on (m,dimV −dimU,m−
dimU). We may assume that dimU > 0 as dimU = 0 case is trivial.

(2) Let W denote the smallest affine linear subvariety in Cm containing the projection of U to
Cm and let F denote the fundamental domain

{(z1, . . . , zm, w1, . . . , wm) ∈ Cm × (C×)m | 0 6 <(zi) < 1, 1 6 i 6 m}.
Prove that the following subset I ⊂ Rm is definable in Ran,exp

I = {x ∈ Rm | GdimU ((x+ V ) ∩ (Γ ∩ F),W ) 6= ∅},
where GdimU (Y,W ) is the set of all y ∈ Y such that Y is regular of dimension dimU around
y and the smallest affine linear subvariety in Cm containing the irreducible component of Y
containing y is a translation of W .

(3) Prove that if I ∩ Zm is finite, then U is definable.
From here we prove by contradiction that I ∩ Zm is infinite because U , a definable closed
analytic subvariety in Cm×(C×)m, must be algebraic by a theorem of Peterzil and Starchenko
("Tame complex analysis and o-minimality" Theorem 4.5); on the other hand U being
algebraic contradicts with U is contained in the graph of exp.

(4) Use I ∩ Zm is infinite to prove that I contains a semi-algebraic curve CR.
(5) By the definition of I, for each c ∈ CR, we consider an irreducible component Xc of

(C+V )∩(Γ∩F) of dimension dimU such that the smallest affine linear subvariety containing
Xc is a translation of W . Prove that if there are infinitely many distinct Wc, then there is
an irreducible component X of (C + V ) ∩ Γ of dimension dimU + 1 and show that we can
apply induction hypothesis to (C + V ) to conclude.

(6) Prove that if there is only finitely many distinct Xc, then there exists Xc0 which is contained
in c+V for all c ∈ C. Show that we may apply inductive hypothesis to conclude if C+V 6= V .

(7) The remaining case is when C + V = V . Prove that there exists V 0 such that V = C× V 0

with V 0 ⊂ Cm−1× (C×)m−1×C× after a suitable linear change of coordinates. Conclude by
applying induction hypothesis on m.

Reference: Tsimerman "Ax–Schanuel and o-minimality"

The class number one problem

This problem shows that the class number one problem for imaginary quadratic fields can be
reduced to finding integral points on certain modular curves. Let K denote an imaginary quadratic
field of discriminant D and class number 1, and let OK denote its ring of integers.
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(1) Suppose K is a quadratic imaginary field of class number 1, and E = C/Λ is an elliptic curve
with CM by OK . Show that E is isomorphic to C/OK .

(2) Suppose that E is an elliptic with CM by OK . Show that j(E) ∈ Y (1) is a rational number.
(3) Suppose p is a fixed prime. Show that for D � 0 and K as above the prime p has to either

be inert or ramify in OK .
From now on we fix a small prime p and assume it to be inert; the ramified case is similar.

(4) Show that the action of OK/p on E[p] defines a point on the nonsplit Cartan modular curve
Xns(p). This modular curve is a quotient of the modular curve X(p), parameterizing elliptic
curves with a basis of E[p], by the action of the normalizer of nonsplit Cartan subgroup
H ⊂ GL2(Fp).

(5) Show that the j-invariant of a CM elliptic curve is an integer.

Thus it suffices to find integral points on Xns(p) for some small p. For example one finds
that the curve Xns(7) has geometric genus 0 and three “cusps”; one can find integral points
on such curves effectively.

(6) The case of a ramified prime can be handled similarly using modular curves. There is also
a more straighforward approach: show that if the discriminant D is divisble by 2 distinct
primes then the class group of K has nontrivial 2-torsion.

Runge’s method

Suppose that the equation f(x, y) = 0, f ∈ Q[x, y] defines a smooth affine curve X, and that the
intersection of X with the line at infinity contains two nonintersecting Galois orbits D1, D2.

(1) Show that there exists a pair of polynomials P1, P2 ∈ Z[x, y] such that Pi restricted to X
has no poles outside Di.

(2) Show that the equation f(x, y) = 0 has only finitely many integral solutions.
(3) Suppose F,G ∈ Z[x] are irreducible relatively prime monic polynomials of the same degree

d > 2. Use Runge’s method to show that the equation F (X) = G(Y ) has only finitely many
integer solutions.

Max Noether’s theorem

The gonality of a curve X is the minimal degree of a nonconstant morphism f : X → P1.
(1) Show that the gonality of a smooth plane curve of degree d is at most d− 1.
(2) Suppose X is a smooth plane curve of degree d > 3 and f : X → P1 is a map of degree less

than d− 1. Let L := f∗O(1), and let OX(n) denote the pullback of O(n) on P2 to X. Show
that there exists an embedding L ↪→ OX(d− 2).

(3) Show that there exists a pencil of plane curves of degree k < (d− 1) that cuts out the linear
series given by f on X. Conclude that the degree of f is at least k(d − k), and thus the
gonality of a smooth plane curve is equal to d− 1.

(4) Show that the gonality of an irreducible singular plane curve is less than d− 1.

Miscellaneous exercises

(1) Show that there does not exists an elliptic curve E/Q with surjective adelic Galois action
ρE : Gal(Q/Q)→

∏
p GL2(Zp).

(2) (Schanuel’s theorem) Show that as X goes to infinity the following formula hods:

#{P ∈ Pn(Q) : H(P ) < X} ∼ 2n

ζ(n+ 1)
Xn+1,
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where ζ(s) =
∏
p(1− p−s)−1 is the Riemann zeta function.

Note. The case n = 1 is already interesting.

(3) Suppose X / SpecZ is a regular curve and P ∈ X (Z) is an integral point. Show that for
every prime p the reduction of P in XFp is a smooth point of XFp .

(4) (Hall’s conjecture for polynomials) SupposeA,B ∈ C[z] are relatively prime, degA = 2d,
degB = 3d. Show that deg(A3 −B2) > d+ 1

(5) Prove the following result of Siegel.

Theorem 5. Let f ∈ Z[x] be a polynomial of degree d > 2 without repeated factors. For
a nonzero integer N let P(N) denote the largest prime factor of N . Then the sequence
P(f(n)), n = 1, 2... grows to infinity.

(6) This exercise shows that the “normal crossing divisor” assumption in Vojta’s conjecture is
necessary.

LetK be a number field and considerX = P2
K with homogenenous coordinates [x0 : x1 : x2]

and a divisor D = (x1 = 0) + (x2 = 0) + ((x1 − x2)x0 = (x1 + x2)
2).

(a) Prove that D is not a normal crossing divisor.
(b) Prove that κ(KX ⊗OX(D)) = dim(X).
(c) Prove that for large enough S, the set of S-integral points in X \D is Zariski dense.
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